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Discrete and continuous disorder in superlattices
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We have derived a general diffraction relation for crystalline-crystalline superlattices including
discrete fluctuations on the number of atoms in a layer and continuous fluctuations on the interface
distance, both of a Gaussian type. We show that discrete fluctuations can markedly increase the
linewidth of high-angle (large-g) diffraction peaks in lattice-mismatched systems. Moreover, we
show that this line broadening increases strongly with increasing lattice mismatch and prove that
these fluctuations on lattice-matched systems such as semiconductor superlattices are difficult to
detect by high-angle diffraction techniques. These results have serious implications for the classical
interpretation of x-ray diffraction from superlattices regarding the determination of elastic strains

and the reconstruction of composition profiles.

The effect of layering on the structural properties of
metallic and semiconductor superlattices has received
considerable attention in recent years.'? It was shown
that it is possible to achieve superlattice growth of ma-
terials with a large lattice mismatch and different crystal
symmetry.® Several structural models have been
developed taking into account various degrees of
structural imperfections, which can influence seriously
the electrical, magnetic, or mechanical properties of lay-
ered structures.

X-ray diffraction (6-20) has been commonly used to
verify and characterize the compositional and strain
modulation in superlattices.’> The linewidth of the
high-angle reflections in metallic superlattices is much
larger than predicted by simple one-dimensional models,
such as the ‘“step” and the “strain” models.*> The
structural coherence length &, in metallic superlattices
rarely exceeds a few times the modulation wavelength A,
indicating that a mechanism reducing the long-range or-
der is effective. In recent works,®”® we showed that con-
tinuous fluctuations on the interface distance (i.e., the dis-
tance at the interface between the atoms of material 4
and B) can explain the loss of long-range order. The de-
rived amount of disorder was of the order of the lattice
mismatch (.e., 300.3 A in Nb/Cu, A=30 A, lattice
mismatch =0.25 A) but is not compatible with the pres-
ence of only a few low-angle peaks.

A small amount of disorder as derived from x-ray spec-
tra, may drastically affect the transport properties of mul-
tilayers. For instance, in lattice-matched Nb/Ta super-
lattices’ with a structure which is claimed to be perfect,
the electronic mean free path / is claimed to be much
longer than A. I;Iowever, a small amount of interfacial
disorder (=0.3 A) as found in Nb/Cu superlattices, is
sufficient to severely limit / to the layer thickness. These
facts indicate that a small structural disorder has a much
more pronounced effect on the electric properties than on
the x-ray spectra.

Different mechanisms can cause disorder: (i) imperfec-
tions in the deposition process, (ii) geometric constraints
at the interfaces due to the differences in lattice parame-
ter and symmetry, (iii) variations in growth mode and
wetting, and (iv) interdiffusion and alloying. In practice,
all these conditions limit the control over the thickness of
the individual layers to approximately a few percent. As
a result, the number of atoms in a crystalline layer will
fluctuate from layer to layer as well as in the plane of the
layer, following roughly a Gaussian distribution of a
discrete type. Furthermore, depending on the nucleation
process, large deviations from the layer-by-layer growth
can occur. On the other hand, the geometric constraints
can be accommodated by distorting the layers or the in-
terfaces if the lattice mismatch is sufficiently small so
that, energetically, such distortions are allowed.

Structural imperfections can be modeled as Gaussian
type of fluctuations, on the modulation wavelength,'®!!
number of atoms in a layer,!? interface distance,®’ layer
thickness,'>!* parallel,’®> and perpendicular to the inter-
faces. We must distinguish between continuous fluctua-
tions, originating from an amorphous interface, for in-
stance, and discrete fluctuations, resulting from crystal-
line interfaces. It was sl‘lpwn13 that the former distribu-
tion with width ¢ “!=2 A, on the thickness of the amor-
phous layer, explains the total loss of high-angle superlat-
tice peaks in crystalline-amorphous systems. At high-
angle (large g), it was reported that the latter distribution
of width ¢ ~! equal to an atomic distance (in crystalline-
amorphous systems) gives rise to a slight reduction in
diffraction-peak intensity and a disappearance of the
secondary fringes.!?

In this paper, we derive a kinematical diffraction rela-
tion for crystalline-crystalline superlattices including in-
terfacial disorder (induced by the lattice mismatch), as
well as disorder due to discrete fluctuations in the number
of atoms composing a given layer. This relation is first
applied to Nb/Cu superlattices, and used to calculate
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39 DISCRETE AND CONTINUOUS DISORDER IN SUPERLATTICES

low-angle as well as high-angle diffraction spectra. The
Nb/Cu system is expected to form superlattices with
sharp interfaces because the constituents do not form any
alloys in their thermodynamic phase diagram. Coheren-
cy strains were not reported for this system, justifying the
use of bulk lattice spacings. In the second part we study
the influence of the lattice mismatch on the line broaden-
ing induced by discrete fluctuations. These results may
have important implications for structural studies of
lattice-matched semiconducting (for instance, GaAs/
GaAlAs) and metallic (for instance, Nb/Ta) superlattices.

As in our previous work,%” we assume that the dis-
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tance at the interface between atoms of the different con-
stituents is not constant throughout the multilayer, but
fluctuates around an average value @ following a continu-
ous, Gaussian distribution of width ¢y 1. The lattice
mismatch can be the origin of this fluctuation. Further-
more, we suppose that the number of atoms in a layer of
material A4 is not constant but fluctuates around an aver-
age N, following a discrete Gaussian distribution, with
width cy'!. For material B we use similar assumptions
(M,cy ). Figure 1 gives a pictorial representation of this
model.
The structure factor F(q) can be written as
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[
with N,,M, the respective number of atoms in the con- Sy =sin(qd,N/2),
sidered nth plane, and a, the value of nth interfacial dis-
tance.. Pis t'he number of (?rystallme blocks of material 4 Cy= cos(gd,N/2) ,
(lattice spacing d,, scattering power f,, average number
of planes N) and material B (lattice spacing d,, scattering )
power f,, average number of planes M). S, =sin(qd, /2) ,
We calculate F(g)F*(gq) and make the average by in-
tegrating over all real interface distances and summing Sy = sin(qgd,M /2) ,
over all integer values. In this relation we use the follow-
ing symbols for expressions where only the average value _ —
of our parameters are involved: Cy=coslgd,M/2) ,
S, = sin(qd, /2) , (2)
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FIG. 1. Model of the superlattice used in the simulations.

A=(N—-1)d,+(M—1)d,+2a ,
Cok—1anp=cos[qg(2k —1)A /2],
Cia=cos(gkA) ,

Sk —1an=sin[q(2k —1)A /2],
Sia=sin(gkA) .

Additional symbols are used for functions which are
averaged over the discrete distributions:
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with K, and K, the normalization constants for the

discrete distributions. With these symbols the intensity
can be written as
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For ¢ '=cy'= =0, Eq. (2) reduces to the step

model,>”® while for cg!'=o and cy'=cy!'=0, it
reduces to the scattering of two independent blocks of
material 4 and B without any trace of superstructure.
This formula can also be used for crystalline-amorphous
multilayers by equating f, to zero.

Using Eq. (2), the high-angle x-ray diffraction pattern
of a Nb/Cu multilayer is calculated for a continuous dis-
tribution width c; ! equal to zero, and for different values
of the discrete distributions (cy !=c,;!) as shown in Fig.
2. In this calculation all correction factors (atomic densi-
ties, polarization, absorption, atomic scattering, Lorentz,
and Debye-Waller factors) are included. A drastic de-
crease of the peak intensities and an increase of the
linewidth is observed with increasing cy!=c,;;!. For
crystalline-amorphous systems, where this type of disor-
der was introduced on the amorphous component, the
discrete fluctuation only reduces slightly the main peak

intensity'?> and wipes out the secondary multilayer
fringes.
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FIG. 2. Evolution of calculated high-angle Nb/Cu spectra
for P=20, d,=2.33 A db~208 A N=M=24, a=(d,
+d,)/2, as a function of ¢y !=cy!. For a large fluctuation am-
plitude only peaks corresponding to g, and g, are visible while
for smaller amplitudes the g, peaks emerge.
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We can intuitively understand our results using a sim-
ple argument based on the finite-size fluctuations of a sin-
gle layer. In this case, layers with different thicknesses
contribute to the diffracted intensity. Changing the
thickness of layer A will only slightly affect the main
peaks around g, =2w/d,, but can drastically shift the
finite-size maxima and minima. These secondary peaks
interfere with the main peaks from material B, increase
the linewidth and wipe out the superlattice structure.

This is clearly illustrated in Fig. 3 where only discrete
variations on the number of atoms of material A are tak-
en into account. The peaks of material B are drastically
affected while the linewidth of the material A4 peaks stays
more or less constant even for relatively large discrete
variations. Note that thickness fluctuations in one ma-
terial tend to broaden diffraction peaks corresponding to
the other material.

Previously® we showed that a continuous distribution
on the interfacial distance of the order of the lattice
mismatch can explain the observed high-angle line
broadening. However, the occurrence of only a few
peaks in the low-angle spectra of most crystalline-
crystalline multilayers cannot be accounted for using the
same continuous distribution. Clearly, a much larger
fluctuation (continuous or discrete) is needed to explain
this fact. Up to now we showed that a discrete distribu-
tion on the thickness can also explain the line broadening
at high angle, but this distribution has to be of the order
of a few times the interatomic distances and might be the
candidate to explain the low-angle data.

In Fig. 4 we plot the low-angle diffraction spectra of
Nb/Cu multilayers calculated as a function of the
discrete distribution (cy '=cy!, c¢q ! =0) using the de-
rived kinematical relation. Clearly, a large discrete dis-
tribution is necessary to explain the absence of many
low-angle peaks. This indicates that it might be possible
to obtain a rough estimate for both the discrete and the
continuous distributions separately. From the low-angle
spectra, the amount of discrete disorder can be estimated.

INTENSITY (arb. units)

FIG. 3. Evolution of calculated high-angle spectra, using the
same parameters as in Fig. 2 except that c;;!=0. Note that the
effect of roughness in one of the superlattice constituents is to
broaden the diffraction peaks corresponding to the other.
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FIG. 4. Evolution of calculated low-angle spectra using the
same parameters as in Fig. 2.

This amount can then be fed back into the calculation of
the high-angle spectra, with the continuous distribution
used only as an adjustable parameter.

Finally, we studied the effect of the lattice mismatch on
the line broadening induced by the discrete disorder.
Figure 5 shows the high-angle spectra for 4 and B r}lulti-
layers with A=100 A, f,=f,=1, ¢, !=c, '=6 A but
for different sets of d values (lattice mismatch). Clearly,
for a nearly lattice-matched system the effect of a large
discrete distribution is negligible, while in systems with a
large mismatch this distribution wipes out all superlattice
structure. This proves that the presence of sharp high-
angle superlattice diffraction peaks in the nearly matched
case is not in contradiction with a substantial amount of
discrete roughness.

These results have serious implications on the classical
interpretation of x-ray diffraction patterns of superlat-
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FIG. 5. Evolution of; calculated high-angle spectra for P =20,
c5'=0,¢,'=c;'=6 A, A~100 A for different lattice spacing
d values. The results are plotted as a function of the lattice
mismatch, d =d, —d,.
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tices. We consider three topics in particular. Lattice-
matched semiconductor superlattices grown by molec-
ular-beam epitaxy generally exhibit very narrow high-
angle diffraction peaks.>!® Considerable caution should
be taken when interpreting these data. As shown above,
a narrow line width in lattice-matched systems does not
necessarily rule out the presence of substantial, discrete,
interfacial roughness. Proper intensity calculations are a
must. Second, high-angle diffraction spectra have been
used to determine the elastic strain in superlattices. The
main effect of strain is to change the relative peak intensi-
ties of the superlattice satellites.®!® However, if the
growth conditions (layer-by-layer growth) or the evapora-
tion conditions (fluctuations on the deposition rate) are
dissimilar for both materials, the discrete distribution will
also give rise to a change in the relative peak intensities.
Finally, the intensities of the low-angle spectra have
often been used to reconstruct the composition profile us-
ing the Fourier series.'®!” The ideal composition profile
expected for superlattices with no interdiffusion and in
the absence of solid solutions is a step function. Howev-
er, the calculated profile can be largely different and may
even have a sinusoidal shape. The interdiffusion length
between the layers is then determined from the distance
between the maximum and the minimum in the profile.

J.-P. LOCQUET et al. 39

Our results indicate that the absence of higher-order
low-angle peaks is not necessarily an indication for
interdiffusion, but could be due to roughness.

In summary, we have derived a new diffraction relation
for crystalline-crystalline superlattices which includes
continuous, as well as discrete, fluctuations. We found
that like continuous distributions a discrete distribution
can seriously influence the long-range order at high angle
in superlattices. Using low-angle diffraction one can in-
dependently estimate the amount of discrete fluctuations.

" These results imply that x-ray linewidths are more sensi-

tive to discrete disorder in lattice-mismatched systems
than in lattice-matched systems.
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